Thursday, June 20, 2024

U.S. Air Force completes initial tests of revolutionary unmanned aerial system

The U.S. Air Force reported that it has successfully completed initial flight tests for the revolutionary unmanned aerial system with a customizable suite of intelligence, surveillance and reconnaissance tools that supports extended missions.

This series of flight tests began in Feb. 2019 at Dugway Proving Ground, Utah, culminating with a two and a half-day continuous flight demonstration from Dec. 9 to Dec 11. Subsequent flight tests will demonstrate increased levels of flight endurance.

The Ultra Long Endurance Aircraft Platform, or Ultra LEAP, consists of a high-performance, cost-effective, sport-class commercial airframe converted to a fully automated system with autonomous takeoff and landing capabilities. Ultra LEAP also features secure, easy to use navigation employing anti-jam GPS and full global operational access via a satellite-based command and control and high-rate ISR data relay link.


“As the Air Force balances current readiness with long-term modernization, Ultra LEAP represents an affordable approach that supports both existing and future force needs,” said Maj. Gen. William Cooley, Air Force Research Laboratory (AFRL) commander, adding that the “enhanced UAS capabilities, along with the cost savings, offers the military a winning solution.”

“Developing a UAS with this level of endurance is an incredible achievement for future warfighting and battlefield success,” said Paul Litke, the AFRL project engineer leading this effort. Litke said since the system employs many commercial off-the-shelf components, Ultra LEAP is expected to dramatically shift the ISR cost-performance curve for the U.S. military.

Developing Ultra LEAP from concept to first flight took less than 10 months, and the system could be ready for operational fielding as soon as 2020. The high level of automation it provides is expected to greatly reduce operator training requirements for the Air Force. Smaller support crews are expected to lead to lower operating costs.

“Accomplished after only 10 months of development by our AFRL industry team, today’s 2 1/2-day Ultra LEAP mission is a significant milestone in solving the tyranny of distance problem for ISR systems,” said Dr. Alok Das, AFRL senior scientist and the CRI director. “It will provide immediate benefit to our warfighters while at the same time paving the path for future low-cost, multi-day endurance ISR systems.”

Ultra LEAP employs many of the subsystems and lessons learned from AFRL’s highly successful prior LEAP program, a UAS that supports missions up to 40 hours. To date, LEAP has completed more than 18,000 combat flight hours and demonstrated one of the lowest mishap rates and smallest mission crew size of any operational UAS in its class. CRI employed the same strategy in both efforts of converting existing aircraft into ISR platforms.

Litke explains by leveraging the commercial aircraft market, AFRL significantly reduced the cost to manufacture and provide logistical spares relative to UAS.

“This way, the U.S. military will save money without sacrificing reliability and maintainability,” he said.

Going forward, parallel AFRL-CRI efforts will focus on UAS operations with short takeoff and landing distances to support deployments at non-traditional locations.

As an early adopter of creating disruptive innovation through paradigm shifts, AFRL established the CRI in 2006 to streamline AFRL’s application of new and existing technologies to address dynamic changes in air, space, ground and cyber battlespaces and solve evolving and urgent operational challenges. The execution of this unique process utilizes highly diverse subject matter expertise and a collaborative government-industry technical and management capability to nimbly and rapidly develop, test and deploy innovative prototype solutions for dynamic operational environments.

CRI routinely uses the Small Business Innovation Research program to identify both disruptive technology and innovative engineering talent for its projects. Working with teams of innovative small businesses, CRI has demonstrated numerous operational successes in such areas as back-packable precision strike platforms, counter-improvised explosive devices, counter drone capabilities and secure on-the-move communications. Several efforts have transitioned to Programs of Record.

If you would like to show your support for what we are doing, here's where to do it.

If you wish to report grammatical or factual errors within our news articles, you can let us know by using the online feedback form.

Executive Editor

About author:

Dylan Malyasov
Dylan Malyasov
Dylan Malyasov is the editor-in-chief of Defence Blog. He is a journalist, an accredited defense advisor, and a consultant. His background as a defense advisor and consultant adds a unique perspective to his journalistic endeavors, ensuring that his reporting is well-informed and authoritative. read more



Vietnam-era M113 armored vehicle gets new firepower

Belgium's John Cockerill has showcased upgraded Vietnam-era M113 armored vehicles equipped with the advanced Cockerill Protected Weapon Station (CPWS) at Eurosatory 2024. The CPWS is...